1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
import litellm
from typing import Dict, List, Optional
from datetime import datetime, timedelta
import json
from dataclasses import dataclass, asdict
from collections import defaultdict
@dataclass
class UsageRecord:
timestamp: datetime
model: str
prompt_tokens: int
completion_tokens: int
total_tokens: int
cost: float
user_id: Optional[str] = None
request_id: Optional[str] = None
class CostTracker:
"""Track and analyze LLM usage costs"""
def __init__(self):
self.usage_records: List[UsageRecord] = []
self.daily_budgets: Dict[str, float] = {} # user_id -> daily budget
self.model_costs = self._load_model_costs()
def _load_model_costs(self) -> Dict[str, Dict[str, float]]:
"""Load model cost information"""
return {
"gpt-3.5-turbo": {
"input_cost_per_token": 0.0000015,
"output_cost_per_token": 0.000002
},
"gpt-4": {
"input_cost_per_token": 0.00003,
"output_cost_per_token": 0.00006
},
"claude-3-sonnet-20240229": {
"input_cost_per_token": 0.000015,
"output_cost_per_token": 0.000075
},
"gemini-pro": {
"input_cost_per_token": 0.000001,
"output_cost_per_token": 0.000002
}
}
def calculate_cost(self, model: str, prompt_tokens: int, completion_tokens: int) -> float:
"""Calculate cost for a specific request"""
if model not in self.model_costs:
# Fallback to LiteLLM's cost calculation
try:
# Create a mock response object for cost calculation
mock_response = type('MockResponse', (), {
'model': model,
'usage': type('Usage', (), {
'prompt_tokens': prompt_tokens,
'completion_tokens': completion_tokens,
'total_tokens': prompt_tokens + completion_tokens
})()
})()
return litellm.completion_cost(completion_response=mock_response)
except:
return 0.0
costs = self.model_costs[model]
input_cost = prompt_tokens * costs["input_cost_per_token"]
output_cost = completion_tokens * costs["output_cost_per_token"]
return input_cost + output_cost
def record_usage(
self,
model: str,
prompt_tokens: int,
completion_tokens: int,
user_id: Optional[str] = None,
request_id: Optional[str] = None
) -> UsageRecord:
"""Record usage for cost tracking"""
cost = self.calculate_cost(model, prompt_tokens, completion_tokens)
record = UsageRecord(
timestamp=datetime.now(),
model=model,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
cost=cost,
user_id=user_id,
request_id=request_id
)
self.usage_records.append(record)
return record
def get_usage_summary(
self,
user_id: Optional[str] = None,
start_date: Optional[datetime] = None,
end_date: Optional[datetime] = None
) -> Dict:
"""Get usage summary with filtering options"""
# Filter records
filtered_records = self.usage_records
if user_id:
filtered_records = [r for r in filtered_records if r.user_id == user_id]
if start_date:
filtered_records = [r for r in filtered_records if r.timestamp >= start_date]
if end_date:
filtered_records = [r for r in filtered_records if r.timestamp <= end_date]
if not filtered_records:
return {
"total_cost": 0,
"total_tokens": 0,
"request_count": 0,
"model_breakdown": {},
"daily_breakdown": {}
}
# Calculate totals
total_cost = sum(r.cost for r in filtered_records)
total_tokens = sum(r.total_tokens for r in filtered_records)
request_count = len(filtered_records)
# Model breakdown
model_breakdown = defaultdict(lambda: {"cost": 0, "tokens": 0, "requests": 0})
for record in filtered_records:
model_breakdown[record.model]["cost"] += record.cost
model_breakdown[record.model]["tokens"] += record.total_tokens
model_breakdown[record.model]["requests"] += 1
# Daily breakdown
daily_breakdown = defaultdict(lambda: {"cost": 0, "tokens": 0, "requests": 0})
for record in filtered_records:
date_key = record.timestamp.date().isoformat()
daily_breakdown[date_key]["cost"] += record.cost
daily_breakdown[date_key]["tokens"] += record.total_tokens
daily_breakdown[date_key]["requests"] += 1
return {
"total_cost": total_cost,
"total_tokens": total_tokens,
"request_count": request_count,
"average_cost_per_request": total_cost / request_count if request_count > 0 else 0,
"model_breakdown": dict(model_breakdown),
"daily_breakdown": dict(daily_breakdown)
}
def check_budget_limit(self, user_id: str) -> Dict[str, Any]:
"""Check if user is within budget limits"""
if user_id not in self.daily_budgets:
return {"within_budget": True, "message": "No budget set"}
today = datetime.now().date()
start_of_day = datetime.combine(today, datetime.min.time())
today_usage = self.get_usage_summary(
user_id=user_id,
start_date=start_of_day
)
daily_budget = self.daily_budgets[user_id]
today_cost = today_usage["total_cost"]
within_budget = today_cost <= daily_budget
remaining_budget = daily_budget - today_cost
return {
"within_budget": within_budget,
"daily_budget": daily_budget,
"today_cost": today_cost,
"remaining_budget": remaining_budget,
"usage_percentage": (today_cost / daily_budget) * 100 if daily_budget > 0 else 0
}
def set_daily_budget(self, user_id: str, budget: float):
"""Set daily budget for a user"""
self.daily_budgets[user_id] = budget
def get_cost_optimization_suggestions(self) -> List[Dict[str, Any]]:
"""Get suggestions for cost optimization"""
suggestions = []
if not self.usage_records:
return suggestions
# Analyze recent usage (last 7 days)
week_ago = datetime.now() - timedelta(days=7)
recent_records = [r for r in self.usage_records if r.timestamp >= week_ago]
if not recent_records:
return suggestions
# Model usage analysis
model_usage = defaultdict(lambda: {"cost": 0, "requests": 0})
for record in recent_records:
model_usage[record.model]["cost"] += record.cost
model_usage[record.model]["requests"] += 1
# Suggest cheaper alternatives for expensive models
total_cost = sum(data["cost"] for data in model_usage.values())
for model, data in model_usage.items():
if data["cost"] / total_cost > 0.5: # Model accounts for >50% of costs
if model == "gpt-4":
suggestions.append({
"type": "model_substitution",
"message": f"Consider using gpt-3.5-turbo for simpler tasks. GPT-4 accounts for {(data['cost']/total_cost)*100:.1f}% of your costs.",
"potential_savings": data["cost"] * 0.9 # Rough estimate
})
elif model == "claude-3-sonnet-20240229":
suggestions.append({
"type": "model_substitution",
"message": "Consider using gpt-3.5-turbo for cost-sensitive applications.",
"potential_savings": data["cost"] * 0.8
})
# Token usage optimization
avg_tokens = sum(r.total_tokens for r in recent_records) / len(recent_records)
if avg_tokens > 2000:
suggestions.append({
"type": "token_optimization",
"message": f"Average token usage is {avg_tokens:.0f}. Consider shortening prompts or responses.",
"potential_savings": total_cost * 0.2
})
return suggestions
# Test cost tracking
def test_cost_tracking():
"""Test the cost tracking functionality"""
tracker = CostTracker()
print("=== Testing Cost Tracking ===\n")
# Set budget for test user
tracker.set_daily_budget("user123", 10.00)
# Simulate some usage
test_usage = [
{"model": "gpt-3.5-turbo", "prompt_tokens": 100, "completion_tokens": 50, "user_id": "user123"},
{"model": "gpt-4", "prompt_tokens": 200, "completion_tokens": 100, "user_id": "user123"},
{"model": "gpt-3.5-turbo", "prompt_tokens": 150, "completion_tokens": 75, "user_id": "user456"},
{"model": "claude-3-sonnet-20240229", "prompt_tokens": 300, "completion_tokens": 150, "user_id": "user123"},
]
for usage in test_usage:
record = tracker.record_usage(**usage)
print(f"Recorded: {record.model} - ${record.cost:.6f}")
print("\n=== Usage Summary ===")
# Overall summary
summary = tracker.get_usage_summary()
print(f"Total cost: ${summary['total_cost']:.6f}")
print(f"Total tokens: {summary['total_tokens']}")
print(f"Total requests: {summary['request_count']}")
print("\nModel breakdown:")
for model, data in summary['model_breakdown'].items():
print(f" {model}: ${data['cost']:.6f} ({data['requests']} requests)")
# User-specific summary
print(f"\n=== User123 Summary ===")
user_summary = tracker.get_usage_summary(user_id="user123")
print(f"User cost: ${user_summary['total_cost']:.6f}")
# Budget check
budget_status = tracker.check_budget_limit("user123")
print(f"Budget status: {budget_status}")
# Cost optimization suggestions
print(f"\n=== Cost Optimization Suggestions ===")
suggestions = tracker.get_cost_optimization_suggestions()
for suggestion in suggestions:
print(f"- {suggestion['message']}")
if 'potential_savings' in suggestion:
print(f" Potential savings: ${suggestion['potential_savings']:.6f}")
if __name__ == "__main__":
test_cost_tracking()
|